這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。
Announced in 2016, Gym is an open-source Python library developed to facilitate the development of reinforcement knowing algorithms. It aimed to standardize how environments are specified in AI research study, making published research more quickly reproducible [24] [144] while supplying users with an easy user interface for communicating with these environments. In 2022, brand-new advancements of Gym have actually been moved to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for support learning (RL) research on video games [147] utilizing RL algorithms and research study generalization. Prior RL research focused mainly on optimizing representatives to fix single tasks. Gym Retro offers the ability to generalize between games with similar concepts however various appearances.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning representatives at first do not have knowledge of how to even stroll, however are provided the objectives of learning to move and to press the opposing representative out of the ring. [148] Through this adversarial knowing process, the agents learn how to adjust to changing conditions. When an agent is then gotten rid of from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, recommending it had actually discovered how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competition between representatives could create an intelligence "arms race" that could increase a representative's capability to work even outside the context of the competition. [148]
OpenAI 5
OpenAI Five is a group of five OpenAI-curated bots utilized in the competitive five-on-five computer game Dota 2, systemcheck-wiki.de that find out to play against human gamers at a high skill level totally through trial-and-error algorithms. Before becoming a team of 5, the very first public demonstration took place at The International 2017, the annual premiere champion tournament for the game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had discovered by playing against itself for 2 weeks of genuine time, which the learning software was a step in the direction of developing software application that can handle complex tasks like a surgeon. [152] [153] The system uses a type of support learning, as the bots find out over time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots expanded to play together as a full team of 5, and they had the ability to beat groups of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against professional gamers, however wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the reigning world champions of the video game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public look came later on that month, where they played in 42,729 overall video games in a four-day open online competition, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the obstacles of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has shown the use of deep support knowing (DRL) representatives to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl uses device discovering to train a Shadow Hand, a human-like robotic hand, to control physical things. [167] It learns totally in simulation utilizing the same RL algorithms and training code as OpenAI Five. OpenAI tackled the object orientation problem by using domain randomization, a simulation method which exposes the student to a variety of experiences instead of trying to fit to truth. The set-up for Dactyl, aside from having motion tracking cams, likewise has RGB electronic cameras to allow the robotic to manipulate an approximate object by seeing it. In 2018, OpenAI revealed that the system had the ability to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could resolve a Rubik's Cube. The robot had the ability to fix the puzzle 60% of the time. Objects like the Rubik's Cube introduce intricate physics that is harder to model. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by using Automatic Domain Randomization (ADR), a simulation technique of creating gradually more difficult environments. ADR varies from manual domain randomization by not needing a human to define randomization varieties. [169]
API
In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI models developed by OpenAI" to let designers get in touch with it for "any English language AI job". [170] [171]
Text generation
The company has promoted generative pretrained transformers (GPT). [172]
OpenAI's initial GPT design ("GPT-1")
The original paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his colleagues, and released in preprint on OpenAI's website on June 11, 2018. [173] It revealed how a generative model of language could obtain world understanding and process long-range dependences by pre-training on a varied corpus with long stretches of adjoining text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language model and the successor to OpenAI's original GPT model ("GPT-1"). GPT-2 was revealed in February 2019, with just restricted demonstrative versions at first launched to the public. The complete variation of GPT-2 was not instantly released due to concern about prospective misuse, including applications for writing fake news. [174] Some experts expressed uncertainty that GPT-2 presented a considerable danger.
In response to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to find "neural fake news". [175] Other researchers, such as Jeremy Howard, warned of "the innovation to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be difficult to filter". [176] In November 2019, OpenAI released the complete version of the GPT-2 language model. [177] Several sites host interactive presentations of different circumstances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose students, illustrated by GPT-2 attaining modern precision and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not more trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain problems encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full variation of GPT-3 contained 175 billion specifications, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 models with as few as 125 million parameters were likewise trained). [186]
OpenAI mentioned that GPT-3 was successful at certain "meta-learning" jobs and might generalize the function of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer learning in between English and Romanian, and in between English and German. [184]
GPT-3 drastically improved benchmark outcomes over GPT-2. OpenAI warned that such scaling-up of language designs might be approaching or encountering the basic capability constraints of predictive language models. [187] Pre-training GPT-3 required numerous thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the complete GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not instantly launched to the general public for issues of possible abuse, although OpenAI planned to allow gain access to through a paid cloud API after a two-month totally free personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified solely to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, systemcheck-wiki.de the design can produce working code in over a dozen programming languages, most efficiently in Python. [192]
Several problems with problems, style flaws and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has actually been accused of giving off copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would cease support for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the upgraded innovation passed a simulated law school bar exam with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also read, analyze or generate as much as 25,000 words of text, and write code in all significant shows languages. [200]
Observers reported that the version of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based iteration, with the caution that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has decreased to expose different technical details and stats about GPT-4, such as the exact size of the design. [203]
GPT-4o
On May 13, 2024, OpenAI revealed and launched GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained state-of-the-art lead to voice, multilingual, and vision standards, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller sized version of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially helpful for enterprises, start-ups and developers looking for to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI launched the o1-preview and o1-mini designs, which have been created to take more time to think of their reactions, resulting in higher accuracy. These designs are especially reliable in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3
On December 20, 2024, OpenAI revealed o3, the successor wiki.myamens.com of the o1 reasoning model. OpenAI also revealed o3-mini, a lighter and much faster version of OpenAI o3. As of December 21, higgledy-piggledy.xyz 2024, this design is not available for public usage. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security researchers had the chance to obtain early access to these designs. [214] The model is called o3 instead of o2 to prevent confusion with telecoms companies O2. [215]
Deep research study
Deep research study is a representative established by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 design to carry out extensive web surfing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools allowed, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image category
CLIP
Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to evaluate the semantic similarity between text and images. It can significantly be utilized for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer design that creates images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to analyze natural language inputs (such as "a green leather handbag shaped like a pentagon" or "an isometric view of an unfortunate capybara") and produce matching images. It can develop pictures of reasonable items ("a stained-glass window with an image of a blue strawberry") as well as objects that do not exist in truth ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.
DALL-E 2
In April 2022, it-viking.ch OpenAI revealed DALL-E 2, an upgraded variation of the design with more realistic results. [219] In December 2022, OpenAI published on GitHub software for Point-E, a brand-new primary system for converting a text description into a 3-dimensional model. [220]
DALL-E 3
In September 2023, OpenAI announced DALL-E 3, a more powerful design much better able to produce images from complicated descriptions without manual prompt engineering and render complex details like hands and text. [221] It was released to the public as a ChatGPT Plus function in October. [222]
Text-to-video
Sora
Sora is a text-to-video model that can generate videos based upon short detailed triggers [223] along with extend existing videos forwards or in reverse in time. [224] It can create videos with resolution as much as 1920x1080 or 1080x1920. The maximal length of produced videos is unknown.
Sora's advancement team named it after the Japanese word for "sky", to represent its "endless innovative capacity". [223] Sora's technology is an adaptation of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos along with copyrighted videos accredited for that function, but did not expose the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it might create videos as much as one minute long. It likewise shared a technical report highlighting the techniques used to train the model, and the model's capabilities. [225] It acknowledged a few of its shortcomings, including battles imitating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "outstanding", but kept in mind that they need to have been cherry-picked and may not represent Sora's normal output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, significant entertainment-industry figures have actually revealed substantial interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the innovation's ability to create reasonable video from text descriptions, mentioning its possible to revolutionize storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had actually decided to pause plans for expanding his Atlanta-based movie studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a big dataset of varied audio and is also a multi-task model that can carry out multilingual speech recognition in addition to speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 styles. According to The Verge, a tune created by MuseNet tends to begin fairly however then fall under chaos the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were utilized as early as 2020 for the internet psychological thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs tune samples. OpenAI specified the tunes "reveal regional musical coherence [and] follow conventional chord patterns" but acknowledged that the songs do not have "familiar larger musical structures such as choruses that duplicate" and that "there is a considerable space" in between Jukebox and human-generated music. The Verge specified "It's highly impressive, even if the results seem like mushy versions of songs that may feel familiar", while Business Insider mentioned "surprisingly, a few of the resulting tunes are appealing and sound legitimate". [234] [235] [236]
Interface
Debate Game
In 2018, OpenAI introduced the Debate Game, which teaches devices to dispute toy issues in front of a human judge. The purpose is to research study whether such a method may help in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and nerve cell of 8 neural network models which are often studied in interpretability. [240] Microscope was produced to examine the features that form inside these neural networks quickly. The models consisted of are AlexNet, VGG-19, various versions of Inception, and different variations of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is an expert system tool constructed on top of GPT-3 that provides a conversational user interface that allows users to ask concerns in natural language. The system then reacts with a response within seconds.
這將刪除頁面 "The Verge Stated It's Technologically Impressive"
。請三思而後行。